922 resultados para Other Immunology and Infectious Disease


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anthropogenic land use changes drive a range of infectious disease outbreaks and emergence events and modify the transmission of endemic infections. These drivers include agricultural encroachment, deforestation, road construction, dam building, irrigation, wetland modification, mining, the concentration or expansion of urban environments, coastal zone degradation, and other activities. These changes in turn cause a cascade of factors that exacerbate infectious disease emergence, such as forest fragmentation, disease introduction, pollution, poverty, and human migration. The Working Group on Land Use Change and Disease Emergence grew out of a special colloquium that convened international experts in infectious diseases, ecology, and environmental health to assess the current state of knowledge and to develop recommendations for addressing these environmental health challenges. The group established a systems model approach and priority lists of infectious diseases affected by ecologic degradation. Policy-relevant levels of the model include specific health risk factors, landscape or habitat change, and institutional (economic and behavioral) levels. The group recommended creating Centers of Excellence in Ecology and Health Research and Training, based at regional universities and/or research institutes with close links to the surrounding communities. The centers' objectives would be 3-fold: a) to provide information to local communities about the links between environmental change and public health ; b) to facilitate fully interdisciplinary research from a variety of natural, social, and health sciences and train professionals who can conduct interdisciplinary research ; and c) to engage in science-based communication and assessment for policy making toward sustainable health and ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IMMUNOLOGICAL MECHANISMS OF EXTRACORPOREAL PHOTOPHERESIS IN CUTANEOUS T CELL LYMPHOMA AND GRAFT VERSUS HOST DISEASE Publication No.___________ Lisa Harn-Ging Shiue, B.S. Supervisory Professor: Madeleine Duvic, M.D. Extracorporeal photopheresis (ECP) is an effective, low-risk immunomodulating therapy for leukemic cutaneous T cell lymphoma (L-CTCL) and graft versus host disease (GVHD), but whether the mechanism(s) of action in these two diseases is (are) identical or different is unclear. To determine the effects of ECP in vivo, we studied regulatory T cells (T-regs), cytotoxic T lymphocytes (CTLs), and dendritic cells (DCs) by immunofluorescence flow cytometry in 18 L-CTCL and 11 GVHD patients before and after ECP at Day 2, 1 month, 3 months, and 6 months. In this study, ECP was effective in 12/18 L-CTCL patients with a 66.7% overall response rate (ORR) and 6/11 GVHD patients with a 54.5% ORR. Prior to ECP, the percentages of CD4+Foxp3+ T cells in 9 L-CTCL patients were either lower (L-CTCL-Low, n=2) or higher (L-CTCL-High, n=7) than normal. Five of the 7 GVHD patients had high percentages of CD4+Foxp3+ T cells (GVHD-High). Six of 7 L-CTCL-High patients had >80% CD4+Foxp3+ T cells which were correlated with tumor cells, and were responders. Both L-CTCL-High and GVHD-High patients had decreased percentages of CD4+Foxp3+ and CD4+Foxp3+CD25- T cells after 3 months of treatment. CD4+Foxp3+CD25+ T cells increased in GVHD-High patients but decreased in L-CTCL-High patients after 3 months of ECP. In addition, numbers of CTLs were abnormal. We confirmed that numbers of CTLs were low in L-CTCL patients, but high in GVHD patients prior to ECP. After ECP, CTLs increased after 1 month in 4/6 L-CTCL patients whereas CTLs decreased after 6 months in 3/3 GVHD patients. Myeloid (mDCs) and plasmacytoid DCs (pDCs) were also low at baseline in L-CTCL and GVHD patients confirming the DC defect. After 6 months of ECP, numbers and percentages of mDCs and pDCs increased in L-CTCL and GVHD. MDCs were favorably increased in 8/12 L-CTCL responders whereas pDCs were favorably increased in GVHD patients. These data suggest that ECP is favorably modulating the DC subsets. In L-CTCL patients, the mDCs may orchestrate Th1 cell responses to overcome immune suppression and facilitate disease regression. However, in GVHD patients, ECP is favorably down-regulating the immune system and may be facilitating immune tolerance to auto-or allo-antigens. In both L-CTCL and GVHD patients, DCs are modulated, but the T cell responses orchestrated by the DCs are different, suggesting that ECP modulates depending on the immune milieu. _______________

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At present, there is a clarion call for action on climate change across the global health landscape. At the recent WHO-sponsored conference on health and climate (held in Geneva, Switzerland, on Aug 27–29, 2014) and the UN Climate Summit (New York, USA, on Sept 23, 2014), participants were encouraged to act decisively to change the current trajectory of climate disruption. Health inequalities, including those related to infectious diseases, have now been pushed to centre stage. This approach represents a step-change in thinking. But as we are urged toward collective action, is it time to rethink our approach to research, especially in relation to climate change and infectious disease?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Brazilian blood centers ask candidate blood donors about the number of sexual partners in the past 12 months. Candidates who report a number over the limit are deferred. We studied the implications of this practice on blood safety. STUDY DESIGN AND METHODS: We analyzed demographic characteristics, number of heterosexual partners, and disease marker rates among 689,868 donations from three Brazilian centers between July 2007 and December 2009. Donors were grouped based on maximum number of partners allowed in the past 12 months for each center. Chi-square and logistic regression analysis were conducted to examine associations between demographic characteristics, number of sex partners, and individual and overall positive markers rates for human immunodeficiency virus (HIV), human T-lymphotropic virus Types 1 and 2, hepatitis B virus, hepatitis C virus, and syphilis. RESULTS: First-time, younger, and more educated donors were associated with a higher number of recent sexual partners, as was male sex in Sao Paulo and Recife (p < 0.001). Serologic markers for HIV and syphilis and overall were associated with multiple partners in Sao Paulo and Recife (p < 0.001), but not in Belo Horizonte (p = 0.05, p = 0.94, and p = 0.75, respectively). In logistic regression analysis, number of recent sexual partners was associated with positive serologic markers (adjusted odds ratio [AOR], 1.2-1.5), especially HIV (AOR, 1.9-4.4). CONCLUSIONS: Number of recent heterosexual partners was associated with HIV positivity and overall rates of serologic markers of sexually transmitted infections. The association was not consistent across centers, making it difficult to define the best cutoff value. These findings suggest the use of recent heterosexual contacts as a potentially important deferral criterion to improve blood safety in Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasmacytoid dendritic cells (pDCs) are a rare population of circulating cells, which selectively express intracellular Toll-like receptors (TLR)-7 and TLR-9 and have the capacity to produce large amounts of type I IFNs (IFN-a/b) in response to viruses or host derived nucleic acid containing complexes. pDCs are normally absent in skin but accumulate in the skin of psoriasis patients where their chronic activation to produce IFN-a/b drives the disease formation. Whether pDCs and their activation to produce IFN-a/b play a functional role in healthy skin is unknown. Here we show that pDCs are rapidly and transiently recruited into healthy human and mouse skin upon epidermal injury. Infiltrating pDCs were found to sense nucleic acids in wounded skin via TLRs, leading to the production of IFN-a/b. The production of IFN-a/b was paralleled by a short lived expression of cathelicidins, which form complexes with extracellular nucleic acids and activated pDCs to produce IFN-a/b in vitro. In vivo, cathelicidins were sufficient but not necessary for the induction of IFN-a/b in wounded skin, suggesting redundancy of this pathway. Depletion of pDCs or inhibition of IFN-a/bR signaling significantly impaired the inflammatory response and delayed re-epithelialization of skin wounds. Thus we uncover a novel role of pDCs in sensing skin injury via TLR mediated recognition of nucleic acids and demonstrate their involvement in the early inflammatory process and wound healing response through the production of IFN-a/b.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Viral invasion of the central nervous system (CNS) and development of neurological symptoms is a characteristic of many retroviruses. The mechanism by which retrovirus infection causes neurological dysfunction has yet to be fully elucidated. Given the complexity of the retrovirus-mediated neuropathogenesis, studies using small animal models are extremely valuable. Our laboratory has used a mutant moloney murine leukemia retrovirus, ts1-mediated neurodegneration. We hypothesize that astrocytes play an important role in ts1-induced neurodegeneration since they are retroviral reservoirs and supporting cells for neurons. It has been shown that ts1 is able to infect astrocytes in vivo and in vitro. Astrocytes, the dominant cell population in the CNS, extend their end feet to endothelial cells and neuronal synapse to provide neuronal support. Signs of oxidative stress in the ts1-infected CNS have been well-documented from previous studies. After viral infection, retroviral DNA is generated from its RNA genome and integrated into the host genome. In this study, we identified the life cycle of ts1 in the infected astrocytes. During the infection, we observed reactive oxygen species (ROS) upregulations: one at low levels during the early infection phase and another at high levels during the late infection phase. Initially we hypothesized that p53 might play an important role in ts1-mediated astrocytic cell death. Subsequently, we found that p53 is unlikely to be involved in the ts1-mediated astrocytic cell death. Instead, p53 phosphorylation was increased by the early ROS upregulation via ATM, the protein encoded by the ataxia-telangiectasia (A-T) mutated gene. The early upregulation of p53 delayed viral gene expression by suppressing expression of the catalytic subunit of NADPH oxidase (NOX). We further demonstrated that the ROS upregulation induced by NOX activation plays an important role in establishing retroviral genome into the host. Inhibition of NOX decreased viral replication and delayed the onset of pathological symptoms in ts1-infected mice. These observations lead us to conclude that suppression of NOX not only prevents the establishment of the retrovirus but also decreases oxidative stress in the CNS. This study provides us with new perspectives on the retrovirus-host cell interaction and sheds light on retrovirus-induced neurodegeneration as a result of the astrocyte-neuron interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has long been known that cholera outbreaks can be initiated when Vibrio cholerae, the bacterium that causes cholera, is present in drinking water in sufficient numbers to constitute an infective dose, if ingested by humans. Outbreaks associated with drinking or bathing in unpurified river or brackish water may directly or indirectly depend on such conditions as water temperature, nutrient concentration, and plankton production that may be favorable for growth and reproduction of the bacterium. Although these environmental parameters have routinely been measured by using water samples collected aboard research ships, the available data sets are sparse and infrequent. Furthermore, shipboard data acquisition is both expensive and time-consuming. Interpolation to regional scales can also be problematic. Although the bacterium, V. cholerae, cannot be sensed directly, remotely sensed data can be used to infer its presence. In the study reported here, satellite data were used to monitor the timing and spread of cholera. Public domain remote sensing data for the Bay of Bengal were compared directly with cholera case data collected in Bangladesh from 1992–1995. The remote sensing data included sea surface temperature and sea surface height. It was discovered that sea surface temperature shows an annual cycle similar to the cholera case data. Sea surface height may be an indicator of incursion of plankton-laden water inland, e.g., tidal rivers, because it was also found to be correlated with cholera outbreaks. The extensive studies accomplished during the past 25 years, confirming the hypothesis that V. cholerae is autochthonous to the aquatic environment and is a commensal of zooplankton, i.e., copepods, when combined with the findings of the satellite data analyses, provide strong evidence that cholera epidemics are climate-linked.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clostridium difficile is the leading definable cause of nosocomial diarrhea worldwide due to its virulence, multi-drug resistance, spore-forming ability, and environmental persistence. The incidence of C. difficile infection (CDI) has been increasing exponentially in the last decade. Virulent strains of C. difficile produce either toxin A and/or toxin B, which are essential for the pathogenesis of this bacterium. Current methods for diagnosing CDI are mostly qualitative tests that detect the bacterium, the toxins, or the toxin genes. These methods do not differentiate virulent C. difficile strains that produce active toxins from non-virulent strains that do not produce toxins or produce inactive toxins. Based on the knowledge that C. difficile toxins A and B cleave a substrate that is stereochemically similar to the native substrate of the toxins, uridine diphosphoglucose, a quantitative, cost-efficient assay, the Cdifftox activity assay, was developed to measure C. difficile toxin activity. The concept behind the activity assay was modified to develop a novel, rapid, sensitive, and specific assay for C. difficile toxins in the form of a selective and differential agar plate culture medium, the Cdifftox Plate assay (CDPA). This assay combines in a single step the specific identification of C. difficile strains and the detection of active toxin(s). The CDPA was determined to be extremely accurate (99.8% effective) at detecting toxin-producing strains based on the analysis of 528 C. difficile isolates selected from 50 tissue culture cytotoxicity assay-positive clinical stool samples. This new assay advances and improves the culture methodology in that only C. difficile strains will grow on this medium and virulent strains producing active toxins can be differentiated from non-virulent strains. This new method reduces the time and effort required to isolate and confirm toxin-producing C. difficile strains and provides a clinical isolate for antibiotic susceptibility testing and strain typing. The Cdifftox activity assay was used to screen for inhibitors of toxin activity. Physiological levels of the common human conjugated bile salt, taurocholate, was found to inhibit toxin A and B in vitro activities. When co-incubated ex vivo with purified toxin B, taurocholate protected Caco-2 colonic epithelial cells from the damaging effects of the toxin. Furthermore, using a caspase-3 detection assay, taurocholate reduced the extent of toxin B-induced Caco-2 cell apoptosis. These results suggest that bile salts can be effective in protecting the gut epithelium from C. difficile toxin damage, thus, the delivery of physiologic amounts of taurocholate to the colon, where it is normally in low concentration, could be useful in CDI treatment. These findings may help to explain why bile rich small intestine is spared damage in CDI, while the bile salt poor colon is vulnerable in CDI. Toxin synthesis in C. difficile occurs during the stationary phase, but little is known about the regulation of these toxins. It was hypothesized that C. difficile toxin synthesis is regulated by a quorum sensing mechanism. Two lines of evidence supported this hypothesis. First, a small (KDa), diffusible, heat-stable toxin-inducing activity accumulates in the medium of high-density C. difficile cells. This conditioned medium when incubated with low-density log-phase cells causes them to produce toxin early (2-4 hrs instead of 12-16 hrs) and at elevated levels when compared with cells grown in fresh medium. These data suggested that C. difficile cells extracellularly release an inducing molecule during growth that is able to activate toxin synthesis prematurely and demonstrates for the first time that toxin synthesis in C. difficile is regulated by quorum signaling. Second, this toxin-inducing activity was partially purified from high-density stationary-phase culture supernatant fluid by HPLC and confirmed to induce early toxin synthesis, even in C. difficile virulent strains that over-produce the toxins. Mass spectrometry analysis of the purified toxin-inducing fraction from HPLC revealed a cyclic compound with a mass of 655.8 Da. It is anticipated that identification of this toxin-inducing compound will advance our understanding of the mechanism involved in the quorum-dependent regulation of C. difficile toxin synthesis. This finding should lead to the development of even more sensitive tests to diagnose CDI and may lead to the discovery of promising novel therapeutic targets that could be harnessed for the treatment C. difficile infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The maintenance and generation of memory CD8 T cells is dependent on the cytokine IL-15. IL-15 is delivered by a novel mechanism termed transpresentation: IL-15 is presented by a cell expressing IL-15Ralpha to the CD8 T cell which responds via IL-2Rbeta/gammac. The identity of what cells transpresent IL-15 to support the survival and homeostatic proliferation of memory CD8 T cells is unknown. Using a transgenic mouse model that limits IL-15 transpresentation to DCs, I have demonstrated that DCs transpresent IL-15 to CD8 T cells. DCs transpresent IL-15 to CD8 T cells during the contraction of an immune response and also drive homeostatic proliferation of memory CD8 T cells. Additionally, I identified a role for ICAM-1 in promoting homeostatic proliferation. Wt memory CD8 T cells displayed impaired homeostatic proliferation in ICAM-1-/- hosts but not in models of acute IL-15-driven proliferation. In this way, the role of ICAM-1 in IL-15 transpresentation resembles the role for ICAM-1 in antigenpresentation: where antigen or IL-15 is limited, adhesion molecules are important for generating maximal responses. In vitro cultures between CD8 T cells and bone marrowdifferentiated DCs (BMDC) activated with a TLR agonist established a model of proliferation and signaling in CD8 T cells that was dependent on IL-15 transpresentation and required ICAM-1 expression by BMDCs. Regarding the expression of IL-15, I demonstrated that in normal mice it is undetectable without stimulation but is elevated in lymphopenic mice, suggesting a role for T cells in regulating IL-15 expression. Overall, these studies have identified many novel aspects of the interaction between DCs and CD8 T cells that were previously unknown. The study of adhesion molecules in IL-15 transpresentation describes a novel role for these well-known adhesion molecules and it will be interesting for future studies to further characterize this relationship for other IL-15-dependent cell types.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies indicate that overweight and obesity protect against HIV-disease progression in antiretroviral therapy (ART)-naïve patients. We examined retrospectively the relationship of overweight/obesity with HIV-disease progression in ART-naïve HIV+ adults in Botswana in a case-control study with 18-month follow-up, which included 217 participants, 139 with BMI 18.0-24.9 kg/m2 and 78 with BMI ≥25 kg/m2. Archived plasma samples were used to determine inflammatory markers: leptin and bacterial endotoxin lipopolysaccharide (LPS), and genotype single nucleotide polymorphisms (SNPs) of the Fat Mass and Obesity Associated Gene (FTO). At baseline, BMI was inversely associated with risk for AIDS-defining conditions (HR=0.218; 95%CI=0.068, 0.701, P=0.011), and higher fat mass was associated with reduced risk of the combined outcome of CD4+cell count ≤250/µL and AIDS-defining conditions, whichever occurred earlier (HR=0.918; 95%CI=0.847, 0.994, P=0.036) over 18 months, adjusting for age, gender, marriage, children, and baseline CD4+cell count and HIV-viral load. FTO-SNP rs17817449 was associated with BMI (OR=1.082; 95%CI=1.001, 1.169; P=0.047). Fat mass was associated with the risk alleles of rs1121980 (OR=1.065; 95%CI=1.009, 1.125, P=0.021), rs8050136 (OR=1.078; 95%CI=1.021, 1.140; P=0.007), and rs17817449 (OR=1.086; 95%CI=1.031, 1.145; P=0.002), controlling for age, gender, tribe, total energy intake, and activity. There were no associations of SNPs with markers of disease progression. Leptin levels were positively associated with BMI (β=1.764; 95%CI=0.788, 2.739; P=0.022) and fat mass (β=0.112; 95%CI=0.090, 0.135; P<0.001), but inversely with viral load (β=-0.305; 95%CI=-0.579, -.031; P=0.030). LPS levels were inversely associated with BMI (OR=0.790, 95%CI=0.630, 0.990; P=0.041), and fat mass (OR=0.852, 95%CI=0.757, 0.958; P=0.007) and directly with viral load (OR=2.608, 95%CI=1.111, 6.124; P=0.028), adjusting for age, gender, smoking and %fat mass. In this cohort, overweight/obesity predicted slower HIV-disease progression. Obesity may confer an advantage in maintaining fat stores to support the overactive immune system. FTO-SNPs may contribute to the variation in fat mass; however, they were not associated with HIV-disease progression. Our findings suggest that the obesity paradox may be explained by the association of increased LPS with lower BMI and higher viral load; while viral load decreased with increasing leptin levels. Studies in African populations are needed to clarify whether genetic variation and inflammation mediate the obesity paradox in HIV-disease progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this Special Issue is to collect together a group of outstanding applied mathematics research articles that provide new insight into our understanding of infectious diseases and infectious disease modelling. The scope of the articles is broad, encompassing both specific applications of modelling to particular examples of infectious diseases, as well as articles that are devoted to the development of more general theoretical insight.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The contribution of recent thymic emigrants (RTEs) to the peripheral naïve T cell population is necessary to maintain diversity of the T cell receptor (TCR) repertoire and produce immune responses against newly encountered antigens. The thymus involutes with age, after irradiation or chemotherapy, and due to severe viral infections. Thymus involution results in decreased thymopoiesis and RTE output leading to a reduced diversity of peripheral T cells. This increases susceptibility to disease and impairs immune responsiveness to vaccines. Therefore, studies aimed at maintaining or regenerating thymic function are integral for maintaining and restoring peripheral TCR diversity. Mice that express a K5.CyclinD1 transgene expression have a severely hyperplastic thymus that fails to undergo involution. Both thymocyte and TEC development appear normal in these mice. We have used the K5.CyclinD1 transgenic model to test the hypothesis that preventing thymus involution will sustain RTE output and incorporation into the peripheral T cell pool to prevent naïve T cell depletion with age. The K5.CyclinD1 transgene was crossed to the RAG2p-GFP transgenic model so that RTEs could be tracked by the intensity of the GFP signal. The frequency and number of RTEs in naïve CD4 splenic T cells was analyzed at monthly intervals to 5 months of age. Using this double transgenic approach, we determined that preventing thymus involution does maintain or enhance the number of RTEs in the peripheral T cell pool before and after thymus involution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Allergen-induced asthma is the leading form of asthma and a chronic condition worldwide. Common allergens are known to contribute to the pathogenesis of this disease. Murine models of allergic asthma have mostly used an intraperitoneal route of sensitization (not airway) to study this disease. Allergic asthma pathophysiology involves the activation of TH2-specific cells, which triggers production of IgE antibodies, the up-regulation of TH2-specific cytokines (i.e. IL-4, IL-5, IL-9 and IL-13), increased airway eosinophilia, and mucin hypersecretion. Although there are several therapeutics currently treating asthmatic patients, some of these treatments can result in drug tolerance and may be linked to increased mortality. CpG oligodeoxynucleotides (ODNs) is a synthetic ligand that targets Toll-like Receptor (TLR) 9. It has been evaluated as a therapeutic agent for the treatment of cancer, infectious diseases, and for treating allergy and asthma. PUL-042 is also a synthetic TLR ligand and is composed of two agonists against TLR2/6 heterodimer and TLR9. Previous studies have evaluated PUL-042 for its ability to confer resistance against bacterial and viral lung infection. These findings, combined with studies performed using CpG ODNs, led to speculation that PUL-042 dampens the immune response in allergen-induced asthma. My thesis research investigated airway route sensitization and airway delivery of PUL-042 to evaluate its effects in reducing an allergen-induced asthma phenotype in a murine model. The results of this study contribute to the foundation for future investigations to evaluate the efficacy of PUL-042 as a novel therapy in allergic-asthma disease.